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A SPHERE ROLLING ON A HORIZONTAL ROTATING PLANE* 

N.A. FUFAEV 

It is shown that in the case of a homogeneous sphere rolling on a horizontal rotat- 
ing plane the forces of viscous friction against the surrounding medium bring the 

center of the sphere to rest, and the resistance to rolling causes a motion along 

an expanding spiral. A motion of a homogeneous sphere rolling without slippage on 
a horizontal and sloping rotating plane was studied earlier in /1,2/, with the vis- 
cous friction and resistance to rolling both neglected. In this case the center of 
a sphere on a horizontal rotating plane describes a circle. 

1. We consider a more general case of motion of a heavy homogeneous sphere on a rough 
horizontal surface n rotating around a vertical axis at a constant angular velocity Q. Let 

k be the central radius of inertia of the sphere, with the mass and radius of thelatterboth 
equal to unity. We introduce the fixed Cartesian Oxyz coordinate system such that the z-axis 
coincides with the axis of rotation of the plane II, and the x and y axes lie in the plane of 
displacement of the sphere center. Together with Oxyz we also introduce a system of moving 
orthogonal axes e,,e,,e, in such a manner that the unit vector e, is directed from the coord- 
inate origin 0 towards the center of the sphere 0, and the unit vector e3 along the z-axis 

(Fig-l). We use the polar r,y coordinates to describe the position of the sphere center, 
denote by o,, wl, oJ the projections of the instantaneous angular velocity of the sphere onthe 
axes e,, e2, es3 and by R,,R, the projections of the reaction force on the same axes, and write 
the equations of dynamics under the following assumptions. The sphere moves in a viscous 
medium and is acted upon by the forces of resistance to rolling appearing as the viscous fric- 
tion forces. Under these assumptions the equations of dynamics of the sphere have the form 

r" - ry.2 = R, - h’r’, ry” + 2r'y' = R, - h”ry’ (1.1) 

k2 (~1’ - on’) = R, - hlocol, k* (a; + oly’) = - R, - Al”w, 
k*w ’ - *- -h o 2 8 

where h denotes the corresponding viscous friction coefficients. The condition of the sphere 
rolling without slippage is expressed in the form of two kinematic coupling equations 

r’ - oz = 0, ry’ + toI = rQ (1.2) 

Equations (1.1) and (1.2) show that the variable oQ is separable, i.e. the natural rotationof 
the sphere about the vertical axis does not affect the motion of its center. 

Eliminating from (1.1) and (1.2) the quantities 01,02, RI, R, and introducing the dimension- 
less time 'c = Qk2(i $- k*)-‘t and dimensionless coefficients h = hQ_lk-2, h, = h,“Q-lk-2, a s i $- k-*, 
we arrive at the following system of two equations: 

After the substitution 

(1.3) 

u = y’, v = r”r-I, u: = In r (1.4) 

the equations (1.3) reduce toasystem 
of three first order differentialequa- 
tions 
ZJ' = -_(h + h,) u + u - 2uv + ah, (1.5) 
v' = - u - (h + h,) v + 12 - v*, 

L(:’ = C’* 

Since the variable w has become separ- 
ated, we describe the dynamics of the 

Fig.1 Fig.2 sphere in terms of the behavior of the 
representative point on the u, v phase 
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Plane in accordance with the differential equations 

u' = -_(A + h,)u + u - 2uv + ah, (1.61 
v' = - II - (h + A,) u + ua - v* 

The system (1.6) has two equilibrium states, (hvd and (U,,v,) the character of which is deter- 
mined by the roots of the characteristic equationpi = -(2v, + h + h,) f j(1 - 214 i = 1,2. when 
h=hl@a - 1) I tb dynamic eyet~ (1.6) is found to be conservative, and it can be confirmed 
that the relation 

u* + v* + 2ah,v = C(2u - 1) (1.7) 

represents its integral. In this Case the points (a,V,) and (US, Us) become center-type sing- 
ularities and the family of curves (1.7) determines the decomposition of tie ~,v phase plane 
into trajectories. The decomposition coincides qualitatively with the phase pattern shown in 
Fig.2 for the values It =A, = 0. 

It can be confirmed that when h = h, = 0, the sphere center always describes a certain 
circle in the fixed coordinate system (is a particular case the sphere center is at rest). In- 
deed, when it = 4 = 0 the system of equations (1.5) has a first integral ln(~% + u*)% fw = C, 
which can be written in terms of initial variables in the form (r-I +r'$a)'f* = V-C,. Thus the 
sphere center moves with velocity V constant in module. To obtain the trajectory along which 
the sphere moves on the Ozy plane , we find the differential which is satisfied by the angle 
0 (Fig.1). From r* = Vcos(fi - y), ?'$ = V sin@ - y)we obtain u = vtg@--y). Differentiating 

this with respect to time and replacing u',v' by their expressions given in (1.6) we find, 
that at h =h, = 0, F = 1. This implies that the sphere center describes, in general,acircle 
with constant angular velocity @'= 1 the value of which in real time is equal to o,, -Drc'(1 + 
k')-' and does not depend on the initial conditions. To find how the viscous friction 
and resistance to rolling influence the motion of the sphere, we consider two cases. 

2. A sphere on a rotating plane in a viscous medium. Here the dynamics of the 
sphere are determined by the behavior of the representative point on the IJ,V phase plane in 
accordance with the differential equations 

U'S -hu + v - 2uv, v' =-ZJ. - hv + u'- us (2.1) 

which follow from (1.6) at h, = 0. According to (2.1) we have two singularities in the u,u 
plane, namely (0, 0) and (I, -h). The first point is a stable focus and the second is an un- 
stable focus. The isocline of the vertical tangents to the phase trajectories is a hyperbola 
(1 - 24(2v + h) = h, while the isocline of the horizontal tangents is a hyperbola (1 -&A)'- 
(2v + h)' = 1 - ha. The sign of the angle of turn of the vector field /3/ during the transition 
from the system of equations obtained from (2.1) at h = 0 to the system (2.1) is determined 
by the difference A = h(u - l)(u' + 9). Moreover, on the straight line u = 'I* we have u' = 

h/2(0, i.e. the line u = 'I1 makes no contact and the limit cycle, if it exists,cannot in- 
tersect it. This implies that no limit cycles exist enveloping the singularity (0.0). We 
shall show that the half-plane u>Vg also contains no limit cycles enveloping_tbe singular- 

ity (1, --k). To do this we transfer the coordinate origin to this point by carrying out a vari- 
able change and setting u=l f E,v = 42 + n. In the variable f,s the system (2.11 assumes 
the form 

E'= -_rl(i +26) +A&, n'= 5" + E-nrl'fhq (2.2) 

When A = 0, the above system has the integral ff ~(5~ -I- $)(I •k 2g)-'= C. Consideringthe famrly 
of the curves H = C as a topographicalPoincar$system, we compute &Sit using the equations 

(2.2) to obtain dH/dt = Zh(1 + E) (&’ + q”) (1 + 2&)*. This implies the absence of limit cycles 

from the half-plane E> -1'/a(~>1/2) , since the sign of the expression for dHidt does no 

alter when E> - 'Ia. 
Fig.3 depicts the decomposition of the u.v phase plane into trajectories. The represent- 

ative point in the u,u plane tends, irrespective of the initial conditions, to a stable sing- 
ularity situated at the coordinate origin. The corresponding motion of the sphere center in 
the Cry plane represents a motion along a contracting spiral towards a fixed point, the Posi- 
tion of which is determined by the magnitude and direction of the initial Velocity of the 

sphere center. AII experiment carried out by G.G. Denisov at the Dept. of Solid Body Dynamics 
~11 PM of the Gor'kii University made possible the actual ObSerVatiOn Of this PartiCUlarCaSe 

of a sphere rolling on a rotating horizontal plane. 

3. Sphere on a rotating plane in the presence of rolling rt?SiStanCe. In 
ej.5 case the dynamics of the sphere is determined by the motion of the representative Point 
on the u,v plane in accordance with the differential equations 
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u’ = -h.,u + v - 2uv + ah,, v’ - --u - h,v + u2 - VP (3.1) 

which follow from (1.6) at h = 0. The isocline at the horizontal tangents to the trajectories 
in the u,v plane is the hyperbola 

and 

The 
the 

(2~ - 1)' - (2~ + hJZ = 1 - h, (3.2) 

Fig.3 Fig.4 

the isocline of the vertical tangents in the hyperbola 

(2u - 1) (2v + IQ = h, (2a - 1) (3.3) 

hyperbola (3.2) intersects the axis v=O at the point u= 1, and the hyperbola (3.3) at 
point u = a> 1. The points v= -h, and v= -ah, <-h, represent the corresponding points 

of intersection ofthehyperbolae with the axis II= 0. The points (u,, vl) and (IL,, v*) of inter- 
section of the hyperbolae (3.2) and(3.3) are singularities of the system of differential equa- 
tions (3.1). The roots of the characteristic equation of (3.1) linearized in the small neigh- 
borhood of the singularities (u,, ul) and (u,, US) are pt = --(L!Vi + h,) f j (1 - 2Ui)r i = 1,2. 

According to Fig.4 v1 < -h,, therefore the singularity (u,,vl) is an unstable focus and 

(a*, v*) is a stable focus, since vr> 0. We shall show that for 0 C h,<1 at least there 
are no limit cycles in the u, vplane. 

‘/A > 0, 
Indeed, on the straight line IL = I/% we have II* = h,(a - 

everywhere, therefore if limit cycles exist, then they encircle the singularity 

0% v1) in the region u < IIn, or the singularity (u,, US) in the region u>I/~. Consider 
the first possibility. We introduce the new coordinates E1, nr with the origin at the singul- 
arityu, = 0 + 0 (h,‘), v1 = -ah, + O(h,*)and write, in these coordinates, the systemof equations 
(3.1) as follows: 

U = (l--2&,) rll + h, (2~ - 1) El, rll' = E? - El - nl* + h, (2a - 1) rll (3.4) 

When h, = 0, the system has the integral HI =(&I* + T$) (1-2&,)-1 = C,. Accordingtothesystem 
(3.4) the time derivative dH,ldt = 24 (2~ - 1) (&* + q12) (1 - 
implies the absence of limit cycles from the region 

u ( ‘, h) (I-2W > 0 for E1 < 1. This 
t' 

Let us consider the second possibility. We introduce new coordinates E2, q, with the 
origin at the singularity ut = 1 + 0 (h,“), v2 = (a - I)& +O(hlB) and write, using these coordin- 
ates, the system of equations (3.1) as follows: 

g; = - (1 + X2) rla - h (2~ - 1) E2 

rla’ = El2 + t - 92* - h, (2a - 1) ?a 

(3.5) 

When h, = 0, the system has the integral HI i (E2* f n2') (1 + 2&)-l = C,.Accorangto*e system 
of equations (3.5) the time derivative dHJdt = - 2hl (2~ - 1) (Ef + q,*) (1 + &,) (1 + 2fn)-* < 0 
for E2>- 1. This implies that there are no limit cycles in the region u>~/~. The phase 
pattern depicted in Fig.4 shows that the representative point tends, on the plane U, v regard- 
less of the initial conditions, to the stable singularity (e,,u,). The corresponding motion of 
the sphere center on the 0~ plane represents a motion along a curve approaching the expand- 
ing spiral with the center at the coordinate origin. 
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